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ABSTRACT

The current methods of determining the treatment margins for

Stereotactic Radiotherapy (SRT) are often inadequate as re-

currences and/or secondary tumors occur at/near the bound-

aries of the treatment margin. If our hypothesis that paths of

elevated water diffusion provide a preferred route for migra-

tion of cancer cells is correct then future SRT treatment vol-

umes would be modified to provide elongated margins along

the paths of elevated water diffusion; thereby reducing the in-

cidence of recurrence. We hypothesize that the migration of

tumor cells from the surface of the tumor can be predicted

using a random walk model constrained by the local diffu-

sion environment. In our implementation the diffusion envi-

ronment is represented by the Principal Diffusion Direction

(PDD) obtained from Diffusion Tensor Imaging (DTI). The

results based on the analysis of DTI datasets of patients who

had recurrences show a high correlation between areas of high

cell concentration determined using the random walk model

and the location of recurrences and/or secondary tumors.

Index Terms— Diffusion Tensor Imaging, Gliomas,

Stereotactic Radiotherapy, Treatment margin

1. INTRODUCTION

Each year in the United States approximately 17,000 new

cases of primary bain tumor are diagnosed [1]. Some of the

common primary brain tumors are glioblastomas and astro-

cytomas. For glioblastomas, with current chemotherapy and

radiation techniques the 5-year survival rate for patients over

45 is less than 2% and the local control rate is only 9% [2].

A typical Stereotactic Radiotherapy (SRT) treatment plan

for a high-grade glioma includes a uniform margin of up-to

25mm surrounding the lesion to account for any unobserved

microscopic spread of tumor cells. This isotropic margin un-

fortunately leads to the unnecessary ablation of healthy tissue

in certain directions resulting in cognitive dysfunction, while
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in certain directions the margin is too small leading to dis-

tant tumor recurrences. The goal of this study is to use mag-

netic resonance (MR) Diffusion Tensor Imaging (DTI) to pre-

dict microscopic tumor spread of aggressive brain tumors and

to help us better understand the mechanism of tumor spread.

These enhancements could lead to improved anisotropic mar-

gins for radiation treatment of malignant brain tumors that

would achieve greater local cancer control and increased pa-

tient survival while decreasing harmful side-effects currently

associated with radiation therapy.

Our scientific hypothesis is that migrating brain cancer

cells follow the paths of least resistance and this migration

of tumor cells from the tumor surface can be predicted us-

ing a random walk model constrained by the local diffusion

environment as determined from MR DTI. In areas of white

matter the direction of greatest diffusion usually parallels the

predominant underlying fiber orientation and it is known from

postmortem studies in humans that glioma cancer cells that

migrate the greatest distance from the primary tumor site are

located predominantly along white matter tracts [3]. Jacob-

sen et al. observed that during embryogenesis neonatal astro-

cytes show a preferential movement along developing axon

tracts [4]. Thus these glioma cells have an inherent tendency

to move along white matter tracts.

The local anisotropic diffusion of water molecules in the

brain can be measured non-invasively in-vivo using MR DTI

[5]. The local 3D diffusion environment is expressed by the

diffusion tensor and the process of computing the diffusion

tensor at each voxel in the image is called DTI.

2. METHODS AND MATERIALS

2.1. Image Acquisition

DTI datasets were acquired for patients who were treated for

aggressive glioma with SRT at the University of Rochester

Medical Center. Acquisition of the DTI data was performed

at the earliest time point possible to obtain a measurement

of the diffusion environment that is least altered by the tu-

mor. The datasets were obtained prior to surgical resection

of tumor and SRT or after surgical resection but before SRT.
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The DTI dataset at the time point with minimum edema was

used. The analysis was performed either retrospectively or

prospectively. For the retrospective study the DTI datasets

were acquired using a clinical whole body 1.5T scanner (Gen-

eral Electric - SIGNA EXCITE) as part of the standard of care

imaging protocol. DTI was performed using one of the fol-

lowing EPI sequences using the following parameters: 1) TR

10s; TE 89.4 ms; 22-26 serial axial slices; 25 diffusion gradi-

ent directions and 3 reference (b=0) scans; and voxel dimen-

sions of 0.98× 0.98× 6 mm or 2) TR 10.8s; TE 101.3ms, 38

axial slices; 21 diffusion encoding directions and 2 reference

scans and voxel dimensions of 0.94 × 0.94 × 3 mm. For the

prospective study, DTI was performed using an EPI sequence

on a 3.0T Siemens scanner with 70 serial axial slices of voxel

dimensions 2.0 × 2.0 × 2.0 mm; TR 10.1s; TE 100 ms; 60

diffusion gradient directions and 10 reference scans.

2.2. DTI Reconstruction

For the retrospective study the DTI datasets were recon-

structed using DTIStudio [6], a streamline tractogaphy tool

made available by Mori et al. . The Diffusion Tensor (DT)

was diagonalized and the eigen values and vectors were cal-

culated by DTIStudio. The Principal Diffusion Direction

(PDD) which is the eigen vector corresponding to the largest

eigen value was exported as a raw file and the Fractional

Anisotropy (FA), which is a measure of directionality, was

exported as an analyze image. For the prospective study the

DTI datasets were reconstructed using Camino [7], a tool

for analysis and reconstruction of Diffusion MRI data made

available by Alexander et al. . The DTI datasets were avail-

able as mosaic images and were converted to SPM analyze

format using MRIConvert1. The diffusion data was recon-

structed using a single tensor model with Camino, the DT

was diagonalized and the eigen system was obtained. The FA

was obtained as an analyze image and the PDD as a raw file.

2.3. Random Walk Model

The assumptions of our random walk model are: 1) Initially

there are an equal number of cells in all surface voxels of the

tumor; 2) The initial cell concentration is a step function with

all cells in the surface voxels and 3) The migration is con-

strained by the PDD. The tumor mask was generated manu-

ally using FSLView, the brain mask was generated using FSL

[8] and the ventricles were segmented using an in-house soft-

ware based on thresholding and flood-fill. The algorithm of

our random walk model is given below. In the algorithm c2s
is the function to convert from cartesian to spherical coordi-

nate system; s2c is the function to convert from spherical to

cartesian coordinate system; d is the function to calculate the

euclidean distance between two points, rand[-1,1] is a ran-

dom number between -1 and 1, δ is the step size expressed as

1http://lcni.uoregon.edu/ jolinda/MRIConvert/

a fraction of the in-plane resolution and [Φ,Θ, r] are PDDs

spherical coordinates with origin at the center of the voxel.

Input: PDD, FA, brain mask, tumor mask, ventricle

mask.

Output: for each voxel a count of how many different

cancer cells visited it.

ct := center of tumor.

foreach surface voxel v do
initialize cell concentration for v to 500.

pos := center of v.

foreach cell c in v do
[Φ,Θ, r] := c2s(PDD[v])

maxΔAngle :=

⎧
⎨

⎩

35◦ if FA[v] < 0.3
10◦ if FA[v] > 0.6
20◦ otherwise

δ :=

⎧
⎨

⎩

0.15 if FA[v] < 0.3
0.4 if FA[v] > 0.6
0.25 otherwise

newΘ := Θ + maxΔAngle · rand[−1, 1]
newΦ := Φ + maxΔAngle · rand[−1, 1]
p1 := pos + s2c(newΘ, newΦ, r) · δ
p2 := pos− s2c(newΘ, newΦ, r) · δ
switch based on regions of p1 and p2 do

case p1 and p2 inside the tumor or while
voxel with FA > 0.5 not visited

pos :={
p1 if d(p1, ct) > d(p2, ct)
p2 otherwise

end
case p1 and p2 inside the brain but one in
tumor and other outside

pos := the point not in the tumor

end
case both outside the tumor

pos :={
p1 if d(p1, pos) > d(p2, pos)
p2 otherwise

end
end
update count on how many different cells

passed in each voxel.
end

end

The probability of cell migration to each voxel is defined

as the ratio of the number of different cells passing through

that voxel to the maximum number of different cells passing

through any voxel.

The random walk model was implemented in C++ and

the probability maps were displayed using Matlab. The sim-

ulations were performed on a pentium D 3GHz, linux 2.6.17

workstation. For a simulation with approximately 750-1500

surface voxels, 500 cells in each surface voxel and each walk

having 500 steps, the run time was between 2 to 8 minutes.
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Fig. 1. Depiction of cell migration model results for retrospective case of anaplastic astrocytoma. [A] T1 weighted post-

contrast image showing the primary anaplastic astrocytoma and treatment margin (pink line - 90% isodose) obtained from the

CT treatment plan. [B] Map of cell concentration showing areas of high concentration in yellow and lower concentration in

red. The slice number is shown in top right corner. [C] The treatment plan that was used for SRT (pink line) and the proposed

anisotropic treatment plan (green line) designed by increasing the dose along areas of high cell concentration (by 1-2cm) and

reducing the dose margin given to the surrounding normal tissue. These plans are depicted on the follow-up T1 weighted post-

contrast image [D] showing the location of the secondary tumor (aquamarine arrow) within the proposed anisotropic treatment

plan (green line).

3. RESULTS

The random walk model was performed on 4 patient datasets

for the retrospective analysis and on 5 patient datasets for the

prospective analysis. In all the simulations for retrospective

analysis there was a high correlation between the location of

secondary tumors and the areas of high cell concentration de-

termined using the model. The result of one of these patients

is presented in Fig 1. The patient had an anaplastic astro-

cytoma in the left temporal lobe (Fig 1A). The 90% isodose

volume from the treatment plan is transferred and shown in

the images by the pink curve. Fig 1B shows the map of cell

concentration. The areas of high concentration in Fig 1B cor-

relate well with the location of the secondary tumor (aqua-

marine arrow in Fig 1D). Fig 1C illustrates a hypothetical

anisotropic treatment plan that was designed by increasing the

dose along areas of high cell concentration and reducing the

dose margin given to the surrounding normal tissue. Had this

new anisotropic treatment plan been applied to this patient,

this may have prevented the secondary tumor which indeed

did occur posterior to the primary tumor (Fig 1B,1C).

To date, only one of the five patients in the prospective

analysis has developed a recurrence (Fig 2). The primary

tumor of this patient was a glioblastoma multiforme in the

left occipital lobe (Fig 2A). The recurrence was observed

3 months later (aquamarine arrow in Fig 2D) and it was

in an area of high cell concentration determined using our

model (Fig 2B, 2C). The other patients in the prospective

study will have regular follow-up images acquired to monitor

recurrence.

4. DISCUSSION

The results support our hypothesis that cell migration from

the tumor surface can be modeled by a random walk con-

strained by the diffusion environment. Thus far, all the pa-

tients studied show a high correlation between areas of high

cell concentration determined by our model and the location

of recurrences and/or secondary tumors.

Our model incorporates two key variables: step size (δ)

and the uncertainty in step direction which is bounded by

maxΔAngle. maxΔAngle was selected based on the con-

sideration of the correlation between uncertainty in PDDs and

FA. Fig 3 in [9] depicts the standard deviation of PDD with

respect to FA for both one-tensor and two-tensor models. To

account for potential fiber crossing in our one-tensor analy-

sis, we chose values for maxΔAngle higher than those for

the one-tensor model in [9] but substantially lower than for

their two-tensor model.

The random walk of tumor cells was simulated using a

varying step-size (δ) based on FA values. The analysis was

repeated (data not shown) using constant step-size (δ=1/4 ×
in-plane resolution). There was no significant difference be-

tween the two types of simulations. Even if a smaller step-size

was used, the tumor cell is constrained to move approximately

in the same direction within the voxel as the PDD in a voxel

does not change.

In our random walk model we assume that the initial cell

concentration is a step function, that all the surface voxels

initially have the same number of tumor cells and that cell

migration depends only on the diffusion environment that the

893



Fig. 2. Depiction of cell migration model results for prospective case of Glioblastoma Multiforme (GBM). [A] T1 weighted

post-contrast image showing the primary GBM. [B,C] Map of cell concentration showing areas of high cell concentration in

yellow and lower concentration in red. The slice number is shown in top right corner. [D] T1 weighted post-contrast follow up

image showing the recurrence (aquamarine arrow) in an area of high cell concentration determined using our model (Figs [B]

and [C]).

cell encounters. In the first few steps of each cell, the concen-

tration profile will assume a more realistic distribution based

on the diffusion environment. It is known that various fac-

tors influence the migration of cells from the tumor surface,

therefore further studies are required to determine the relative

influence of these factors on cell migration.

5. CONCLUSION

In four out of four retrospective patients and one out of one

prospective patients there is a high correlation between areas

of high cell concentration determined using the model and

the location of recurrences and/or secondary tumors. To ver-

ify our hypothesis we are currently acquiring DTI datasets on

more patients as part of this prospective study.
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